A Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part II: Nonlinear Simulations

نویسندگان

  • BOUALEM KHOUIDER
  • ANDREW J. MAJDA
چکیده

Observations in the Tropics point to the important role of three cloud types, congestus, stratiform, and deep convective clouds, besides ubiquitous shallow boundary layer clouds for both the climatology and large-scale organized anomalies such as convectively coupled Kelvin waves, two-day waves, and the Madden–Julian oscillation. Recently, the authors have developed a systematic model convective parameterization highlighting the dynamic role of the three cloud types through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with lower troposphere heating and cooling corresponding respectively to congestus and stratiform clouds. The model includes both a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation and also a nonlinear switch that favors either deep or congestus convection depending on whether the lower middle troposphere is moist or dry. Here these model convective parameterizations are applied to a 40 000-km periodic equatorial ring without rotation, with a background sea surface temperature (SST) gradient and realistic radiative cooling mimicking a tropical warm pool. Both the emerging “Walker cell” climatology and the convectively coupled wave fluctuations are analyzed here while various parameters in the model are varied. The model exhibits weak congestus moisture coupled waves outside the warm pool in a turbulent bath that intermittently amplify in the warm pool generating convectively coupled moist gravity wave trains propagating at speeds ranging from 15 to 20 m s 1 over the warm pool, while retaining a classical Walker cell in the mean climatology. The envelope of the deep convective events in these convectively coupled wave trains often exhibits large-scale organization with a slower propagation speed of 3–5 m s 1 over the warm pool and adjacent region. Occasional much rarer intermittent deep convection also occurs outside the warm pool. The realistic parameter regimes in the multicloud model are identified as those with linearized growth rates for large scale instabilities roughly in the range of 0.5 K day .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models for Multiscale Interactions I: A multicloud model parameterization

In this chapter, we present a model parameterization for organized tropical convection and convectively coupled tropical waves. The model is based on the main three cloud types: congestus, deep, and stratifrom that are observed to play an important role in the dynamics and morphology of tropical convective systems. The model is based on the self-similarity across scales of tropical convective s...

متن کامل

A Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part I: Linear Analysis

Recent observational analysis reveals the central role of three multicloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large-scale convectively coupled Kelvin waves, westward-propagating two-day waves, and the Madden–Julian oscillation. A systematic model convective parameterization highlighting the dynamic role of the three cloud types is developed here...

متن کامل

Simple models for the diurnal cycle and convectively coupled waves

This paper presents a study of the diurnal cycle of tropical precipitation and its interaction with convectively coupled waves in the context of simple models with crude vertical resolution. One and two baroclinic mode models are tested in both the context of a one-column model and the context of full spatial dependency that permits waves to propagate and interact with the diurnal cycle. It is ...

متن کامل

Multicloud Models for Organized Tropical Convection: Enhanced Congestus Heating

Despite the recent advances in supercomputing, the current general circulation models (GCMs) poorly represent the large-scale variability associated with tropical convection. Multicloud model convective parameterizations based on three cloud types (congestus, deep, and stratiform), introduced recently by the authors, have been revealed to be very useful in representing key features of organized...

متن کامل

The MJO in a Coarse-Resolution GCM with a Stochastic Multicloud Parameterization

The representation of the Madden–Julian oscillation (MJO) is still a challenge for numerical weather prediction and general circulationmodels (GCMs) because of the inadequate treatment of convection and the associated interactions across scales by the underlying cumulus parameterizations. One new promising direction is the use of the stochastic multicloud model (SMCM) that has been designed spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007